-
分享PCB中产生电磁干扰的原因及消除干扰技巧
在PCB中,会产生EMI的原因很多,例如:射频电流、共模准位、接地回路、阻抗不匹配、磁通量……等。为了掌握EMI,我们需要逐步理解这些原因和它们的影响。虽然,我们可以直接从电磁理论中,学到造成EMI现象的数学根据,但是,这是一条很辛苦、很漫长的道路。对一般工程师而言,简单而清楚的描述更是重...
2018-03-27
PCB 电磁干扰
-
如何判断通信开关电源的优劣?
通信开关电源技术在20世纪80年代引入我国,如今已广泛应用于通信领域。由于通信开关电源的性能直接影响着通信系统的可靠性,因此正确判别通信电源的优劣也就显得尤为重要。仅从电源的输入、输出特性指标来衡量开关电源的优劣,显然是不够的,还应该从下列几方面着手。
2018-03-27
开关电源 通信
-
Massive MIMO和波束赋形:5G流行词背后的信号处理
基站包含大量天线,因此,提升基站频谱效率的一种方案是通过这些同一频率资源与多台空间上分离的用户终端同时通信并利用多径传输,故通过基站提升效率是方案之一。这种技术常被称为massive MIMO(大规模多入多出)。您可能听到过massive MIMO被描述为大量天线的波束赋形。随之而来的问题是:何谓波...
2018-03-27
MIMO 波束赋形 5G 信号处理
-
对电阻使用的经验法则说不
如果您是在741运算放大器横行天下的时代长大的,那么平衡运算放大器输入端电阻的观念必定已扎根在您的头脑中。随着时间的流逝,由于不同电路技术和不同IC工艺的出现,这样做可能不再是对的。事实上,它可能引起更大直流误差和更多噪声,使电路更不稳定。我们以前为什么要那样做?什么变化导致我们现...
2018-03-27
电阻 经验法则 运算放大器
-
5G给RF前端产业生态带来了什么改变?
5G毫米波RF前端??榻沟赘谋涓丛拥腞F组件/??楣┯α?。特别是因为5G毫米波技术让供货商能够使用CMOS或SOI制造技术,在SoC中设计RF前端模块,为手机生态系统架构中的“先进CMOS设计和制造商”开启深入RF市场的大门……
2018-03-26
产业前沿 RF/微波 物联网 通信
-
从两个典型案例,看无线传感器网络在工业应用中的发展趋势
将物联网功能应用于晶圆厂,使用震动传感器、无线收发器和无线组网协议栈,可提高生产工厂的事故预测性,管理人员甚至可以在家里收到通知,了解一些问题并制定相应的计划。
2018-03-26
无线技术 技术实例 工业物联网 工业电子 传感器
-
深度解析电容器的ESD耐性
人体和设备所携带的静电向整机及电子元件放电时,由于增加了冲击性的电磁能量,则产品必须具备一定量ESD耐力。
2018-03-26
电容器 ESD耐性
-
负电压线性稳压器
什么是负电压?说到电压,一切都是相对的。不同的电导体之间有不同的电位。这意味着一个电压可以高于另一个电压。这种情况下一般不会使用"负电压"的描述。我们所说的负电压是指一个电压低于系统的地电位。图1是一个3.3V电源电压和0V系统地电位的示例。在这个系统中,需要测量和记录传感器的信号。这...
2018-03-23
负电压 线性稳压器 信号检测
-
为简化和降低成本而集成的最新专用USB-C控制器芯片
随着USB Type-C接口标准的推出,全新USB PD 3.0标准将得到认可。USB Type-C标准提供了一种新的连接器/插座设计。这种USB-C插头可双向插接,更便于用户使用。相比于熟悉的USB Type-A连接器,此USB-C连接器更小,并能够承载HDMI,DisplayPort通信以及USB通信。
2018-03-23
通信 接口/总线 USB Type-C控制器
- 避开繁琐!运放差分电容测量简化指南
- 精准捕捉电流波形:开关电源电感电流测量技术详解
- 恒压变压器选型指南:如何平衡成本与性能?
- 电能控制的中枢神经:控制变压器深度解析
- 物联网互联新选择:1-Wire总线技术详解与实战指南
- 高性能电阻丝市场需求攀升,Kanthal康泰尔亚洲新建生产设施正式启用,将大幅提高产能
- 安森美获Vcore技术授权,强化AI数据中心电源解决方案
- 贸泽电子新推EIT专题:洞察3D打印如何重塑设计与制造
- 聚焦能效与性能,Vishay为AI及电动汽车注入“芯”动力
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall