-
Qi充电获得亟需的安全性能提升
新技术的出现受到了反对意见的阻碍,Qi感应式充电技术颇费时日才被广泛接受。因此,虽然Qi早在2010年就已发布,但又过了五年才占据主导地位。自那时起,无线充电联盟(WPC)对Qi进行了重大改进,但直到2021年初,联盟才增加了一项协议,从而使支持Qi的设备制造商能够验证充电器的身份及其对Qi规范的遵守情况。这项功能可以剔除那些可能损害甚至损毁其充电产品的充电器,因此无疑是Qi 1.3中最重要的新特性。
2023-04-14
-
55V 高效降压-升压电源管理器和多化学电池充电器
如今,电池充电器有望轻松支持各种电池化学成分并接受一系列电压输入,包括范围广泛的太阳能电池板。输入电压范围跨越输出电池电压上下的情况越来越普遍,需要降压和升压能力(降压-升压拓扑)。LTC4020 降压-升压电源管理器和多化学电池充电控制器可以采用 4.5V 至 55V 的宽范围输入并产生高达 55V 的输出电压。其降压-升压 DC/DC 控制器支持高于、低于或等于输入电压的电池和系统电压。
2023-03-28
-
直流支撑铝电解电容器在车载充电器中的应用
电动汽车(EV)市场的持续增长带动了车载充电器 (OBC) 的需求的快速发展。OBC不仅支持直流充电桩快速充电,还支持使用交流电源在合理的时间内充电。这种系统目前的功率可达22kW,工作电压可达800V。OBC的功能是按照电池管理系统的要求,将外部交流电压转换为特定的直流电压。这种方法能节约电池并实现快速充电过程。尤其是在快速直流充电基础设施尚不够健全的偏远地区,OBC能有效提高人们对电动汽车的购买欲。
2023-03-09
-
如何为汽车和工业电源转换器实施稳健的小型 EMI 控制解决方案
确保设备和用户的安全对设计人员来说至关重要,而电容器则发挥着关键作用。在诸如电动汽车 (EV) 充电器、变频器 (VFD) 的电磁干扰 (EMI) 过滤器、LED 驱动器等系统中,以及诸如电容式电源和电源转换器等高能量密度应用中,元器件尺寸、重量和可靠性同样具有举足轻重的作用。
2023-03-08
-
电池管理系统创新如何提高电动汽车采用率
要在未来实现全电动化,需要进行电动动力总成系统创新,其中包括BMS、车载充电器和直流/直流转换器以及牵引逆变器。这些系统的核心是使电气化成为可能的半导体元件。
2023-03-07
-
专用 MCU 如何满足车载充电器设计需求
电池容量是一个考虑因素。随着设计人员努力通过扩大储能容量和逐步提高效率来优化范围,它的尺寸和电压都在增加。汽车电子设备(尤其是线束)的尺寸和重量也是优化的目标。这些因素对车辆每次充电的续航里程有重大影响;然而,它们是一把双刃剑。更大的电池充电时间更长;在越野旅行中在充电站停车 4 小时是不可能的。
2023-03-02
-
RS瑞森半导体超结MOS在适配器上的应用
电源适配器(Power adapter)被广泛应用于日常生活中常见的电器电源中,如笔记本充电器、电动车充电器等。但由于高压的存在,作为核心部分的AC-DC控制器对器件的可靠性与能效比有着较高的要求,所以合理的选择器件能有效降低损耗,提高可靠性,降低EMC。
2023-02-24
-
种草氮化镓充电器,几个方面要注意
现代人生活节奏加快,手机也被要求有更快的运行速度。运行速度的提升带来电量的快速消耗,传统充电器已经无法满足需求。氮化镓充电器在体积、发热、效率转换上相比传统充电器更具有优势,逐渐成为主流产品。
2023-02-21
-
第三代半导体功率器件在汽车上的应用
目前碳化硅(SiC)在车载充电器(OBC)已经得到了普及应用,在电驱的话已经开始逐步有企业开始大规模应用,当然SiC和Si的功率器件在成本上还有一定的差距,主要是因为SiC的衬底良率还有长晶的速度很慢导致成本偏高。随着工艺的改进,这些都会得到解决。
2023-02-21
-
贸泽电子联手Qorvo推出全新电子书探索汽车设计的未来
提供超丰富半导体和电子元器件?的业界知名新品引入 (NPI) 分销商贸泽电子 (Mouser Electronics) 宣布与Qorvo联手推出全新电子书《The Future of Automotive》(汽车的未来),探索正在重塑汽车设计的技术创新。书中,来自贸泽和Qorvo的主题专家对车联网 (V2X) 架构、超宽带 (UWB) 通信和电动汽车车载充电器 (OBC) 等技术进行了丰富而实用的分析。
2023-02-13
-
罗姆(ROHM)第4代:技术回顾
罗姆今年发布了他们的第4代(Gen4)金氧半场效晶体管(MOSFET)产品。新系列包括额定电压为750 V(从650 V提升至750 V)和1200 V的金氧半场效晶体管,以及多个可用的TO247封装元件,其汽车级合格认证达56A/24m?。这一阵容表明罗姆将继续瞄准他们之前取得成功的车载充电器市场。
2023-02-03
-
可编程交流电源应用--电子设备启动浪涌电流测试
日常生活中,我们常见手机充电器、电脑电源等电子设备插头插入插座瞬间,插座内部出现电火花,甚至还能听到一声“啪”。产生以上现象主要原因是电子设备启动浪涌电流过大。较大的启动浪涌电流,容易损坏电子设备的器件(如整流桥、继电器),也可能干扰到周围电子设备正常工作,甚至会导致电网线路跳闸断电。有效控制电子设备启动浪涌电流不仅有利于提高电子设备使用寿命,而且能降低对周围的电子设备干扰影响,量测和改善电子设备最大启动浪涌电流是电子设备研发和验证过程中不可或缺的环节。
2023-01-30
- 破解多收发器同步难题:基于MAX2470的高隔离时钟耦合方案
- 汽车照明双突破:艾迈斯欧司朗携手DP Patterning实现环保与智能控制完美结合
- 三核驱动革新!Melexis MLX81350重塑电动汽车空调控制
- 覆盖全球导航系统:Abracon新品天线兼容GPS/北斗/Galileo/GLONASS四大星座
- 恩福(中国)与杰牌传动签署战略合作协议,从深耕中国到植根全球
- 智能制造破解汽车产业升级痛点 多方协同构建核心竞争力
- 从实验室迈向现实:5G-A赋能“夸父”机器人完成百米火炬接力
- 七赴进博之约ASML沈波:以光刻“铁三角”助力中国半导体应对AI浪潮
- E2AGLE测试平台:航空电气化的关键技术突破
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall





