-
破解多收发器同步难题:基于MAX2470的高隔离时钟耦合方案
在多输入多输出(MIMO)无线通信系统中,确保多个收发器共享一个高精度、低噪声的参考时钟,是保障系统整体性能(如低误差矢量幅度EVM)的关键。时钟信号在分配过程中,任何负载不匹配或信号串扰都可能导致同步失效。MAX2470与MAX2471缓冲放大器,凭借其高反向隔离度、灵活的负载驱动能力及低成本特性,为此提供了高效的解决方案。
2025-11-05
-
塔克热系统革新光??樯⑷?,OptoTEC? MBX系列TEC推出新客制选项
德国罗森海姆,2025年10月30日 – 全球热管理解决方案的领导者塔克热系统(前身为莱尔德热系统)今日宣布,为其OptoTEC? MBX系列热电制冷器推出全新的客制化选项。此举旨在应对由人工智能驱动的下一代数据中心中,超高速光收发器所面临的严峻热管理挑战。
2025-10-30
-
立足前沿产品技术,村田携多款产品亮相2025光博会
中国深圳,2025年9月10日——全球领先的综合电子元器件制造商村田中国(以下简称“村田”)携旗下多款创新产品与整体方案亮相第26届中国国际光电博览会(CIOE,以下简称“光博会”),展位号:11馆11D32,重点展示面向光??椤⒔换换?、光收发器等设备的高性能元器件产品及高效能源解决方案。
2025-09-12
-
AFE7955:直接射频采样时代的多通道收发器,重构高性能系统设计
在5G通信、军用雷达、测试测量等高性能领域,工程师们面临着一个共同的挑战:如何在简化系统设计的同时,满足多通道、宽带宽、高动态性能的需求?传统收发器依赖复杂的频率转换环节(如混频器),不仅增加了器件数量和成本,还容易引入噪声和失真。德州仪器(TI)推出的AFE7955多通道收发器,以直接射频采样架构为核心,打破了这一困境——它集成2个发射(TX)链、3个接收(RX)链,覆盖600MHz至12GHz宽频率范围,无需额外频率转换级,同时实现了发射通道无杂散动态范围(SFDR)>68dBc、接收通道噪声密度-156dBFS/Hz的高动态性能。这款器件的出现,不仅简化了高性能系统的设计流程,更成为5G、雷达等领域的“核心基石”。
2025-08-21
-
BMS开路检测新突破:算法如何攻克电芯连接故障识别难题?
噪声敏感器件的功耗不断提高。医疗超声成像系统、5G收发器和自动测试设备(ATE)等应用需要在面积较小的PCB上实现高输出电流(>5 A)、低噪声水平和高带宽。由于对输出电流的需求较高,以前使用的传统双级(降压+低压差(LDO)稳压器)解决方案需要的PCB面积较大,导致功耗较高,因此不太受欢迎。
2025-05-11
-
硅光技术新突破:意法半导体PIC100开启数据中心高能效时代
PIC100 是意法半导体的首个硅光子技术,是在300 毫米晶片上制造的以高能效为亮点的PIC(光子集成电路),每通道数据速率达到200Gbps,未来甚至有望实现更高的带宽。事实上,此次发布意义重大,因为它开启了一系列光子集成电路的先河, ST还计划推出更多的后续技术,助力数据中心、人工智能服务器集群和其他光纤网络设备提升能效。目前,许多可插拔光收发器都在使用ST的 BiCMOS B55 芯片,因此ST对市场有一定的了解。利用意法半导体的能效更高的 PIC制造技术和下一代55 纳米硅锗芯片B55X,可插拔光收发器厂商将会在市场上树立新的能效和性能标杆,这对于推广普及传输速度更快的通信标准至关重要。
2025-04-30
-
如何优化超低噪声μModule稳压器的二阶输出滤波器
噪声敏感器件的功耗不断提高。医疗超声成像系统、5G收发器和自动测试设备(ATE)等应用需要在面积较小的PCB上实现高输出电流(>5 A)、低噪声水平和高带宽。由于对输出电流的需求较高,以前使用的传统双级(降压+低压差(LDO)稳压器)解决方案需要的PCB面积较大,导致功耗较高,因此不太受欢迎。
2025-03-13
-
如何通过配置控制器优化CAN总线系统性能
控制器局域网络(CAN)可在多个网络站点之间提供强大的通信能力,支持多种数据速率和距离。CAN具有数据链路层仲裁、同步和错误处理等特性,广泛用于工业、仪器仪表和汽车应用之中。在ISO 11898标准的框架下,借助分布式多主机差分信令和内置故障处理功能,DeviceNet、CANopen等多种协议针对物理层和数据链路层规定了相应的实现方式。本文旨在描述如何针对给定应用优化设置,同时考虑控制器架构、时钟、收发器、逻辑接口隔离等硬件限制。文章将集中介绍网络配置问题——包括数据速率和电缆长度——说明何时有必要对CAN节点进行重新配置,以及如何从一开始就实现对节点的优化配置。
2025-01-16
-
使用IO-Link收发器管理数据链路如何简化微控制器选择
在IO-Link应用中,收发器充当运行数据链路层协议(堆栈)的微控制器和24 V IO-Link信号线路之间的物理层接口。IO-Link通信涉及多种类型的传输,包括过程数据、值状态、从站数据和事件。这样一来,如果发生错误,便能快速识别、跟踪和处理工业从站,帮助减少?;奔?。IO-Link支持远程配置;例如,如果需要调整触发过程警报的阈值,可以通过IO-Link连接将更新的阈值发送到从站,以此方式进行调整,无需技术人员前往现场操作。
2025-01-07
-
使用 3.3V CAN 收发器在工业系统中实现可靠的数据传输
工业市场正在迅速发展,新兴技术正在满足不断增长的创新和效率需求。工业应用使用多种不同的接口(包括以太网、RS-485 和控制器局域网 (CAN))在不同的设备之间传输时间敏感型数据。在选择要使用的接口时,设计人员必须考虑许多不同的目标,进行权衡。
2024-11-28
-
借助完全可互操作且符合 EMC 标准的 3.3V CAN 收发器简化汽车接口设计
随着汽车的不断发展,配备的先进功能越来越多,旨在增强安全性、舒适性和便利性。更多的功能意味着需要更复杂的电子器件,这凸显了电源效率的重要性。高能效有助于延长行驶里程并降低运营成本,使半导体制造商可以将微控制器 (MCU) 等电气元件的典型电源电压从 5V 降低到 3.3V。在许多汽车系统中,现在只需要为 5V 控制器局域网 (CAN) 收发器提供 5V 电源轨,而其他元件可以使用由 12V、24V 或 48V 电池提供的 3.3V 或更低电源轨。使用 3.3V 电源运行的 CAN 收发器将不再需要 5V 电源轨,便于与 MCU 无缝连接。
2024-11-24
-
ADI的智能工厂专业知识助您选择合适的IO-Link从站收发器
选择IO-Link从站收发器时,我们先要考虑该器件支持的连接器引脚功能的数量和类型。有些智能工厂器件可能只需要一个C/Q引脚来进行数据传输/切换,MAX22514非常适合此类任务。有些器件可能需要IO-Link连接,其中包括额外的数字输入(DIN),以传输来自基本传感器或按钮开关的信号。在这种情况下,MAX22515是更好的选择?;褂行┢骷赡芑剐枰獶IN配置为数字输出(DO),而MAX22513提供了这种额外的自由度。
2024-09-03
- ROHM新型接近传感器面世:VCSEL技术赋能工业自动化精准感知
- 为智能电动汽车赋能!纳芯微NSR2260x-Q1系列攻克复杂电源挑战
- 射频性能再升级,大联大品佳推出基于达发AB1585AM的头戴式蓝牙耳机方案
- 从零售到医疗:安勤四尺寸触控电脑满足多元自助服务场景
- 覆盖全球导航系统:Abracon新品天线兼容GPS/北斗/Galileo/GLONASS四大星座
- 意法半导体CEO将重磅亮相摩根士丹利TMT大会,释放战略信号
- 采购无忧:贸泽电子备货瑞萨新品,覆盖全系列嵌入式应用
- 创新强基,智造赋能:超600家企业齐聚!第106届中国电子展打造行业盛宴
- 安森美获Aura半导体授权,强化AI数据中心电源生态
- 东芝携150年创新积淀八赴进博,以科技赋能可持续未来
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 汽车??榕赘涸氐慕饩龇桨?/a>
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall




