-
单极点系统的运算放大器总输出噪声计算
我们已经指出,噪声比一些较大噪声源少三分之一至五分之一的任何噪声源都可以忽略,几乎不会有误差。此时,两个噪声电压必须在电路内的同一点测量。要分析运算放大器电路的噪声性能,必须评估电路每一部分的噪声贡献,并确定以哪些噪声为主。为了简化后续计算,可以用噪声频谱密度来代替实际电压,从而带宽不会出现在计算公式中(噪声频谱密度一般用nV/√Hz表示,相当于1 Hz带宽中的噪声)。
2020-05-26
-
仪表放大器噪声
由于仪表放大器主要用于放大微小精密信号,因此,有必要了解所有相关噪声源的效应。仪表放大器模型如下面图1所示。
2020-05-25
-
1+1>2!这样同时实现高精度与高功率
工程师常常面对各种挑战,需要不断开发新应用,以满足广泛的需求。一般来说,这些需求很难同时满足。例如一款高速、高压运算放大器(运放),同时还具有高输出功率,以及同样出色的直流精度、噪声和失真性能。市面上很少能见到兼具所有这些特性的运算放大器。
2020-05-25
-
无烦恼,高增益:构建具有纳伏级灵敏度的低噪声仪表放大器
构建具有纳伏级灵敏度的电压测量系统会遇到很多设计挑战。目前最好的运算放大器(比如超低噪声AD797)可以实现低于1nV/ Hz的噪声性能(1 kHz),但低频率噪声限制了可以实现的噪声性能为大约50 nV p-p(0.1 Hz至10 Hz频段内)。过采样和平均可以降低宽带噪声的rms贡献,但代价是牺牲了更高的数据速率,且功耗较高,但过采样不会降低噪声频谱密度,同时它对1/f区内的噪声无影响。
2020-05-21
-
能否在 200 ns 内开启或关闭RF源?
在脉冲雷达应用中,从发射到接收操作的过渡期间需要快速开启/关闭高功率放大器 (HPA)。典型的转换时间目标可能小于1 μs。传统上,这是通过漏极控制来实现的。漏极控制需要在28 V至50 V的电压下切换大电流。已知开关功率技术可以胜任这一任务,但会涉及额外的物理尺寸和电路问题。
2020-05-21
-
射频采样ADC输入?;ぃ赫獠皇悄Х?/a>
任何高性能模数转换器(ADC),尤其是射频采样ADC,输入或前端的设计对于实现所需的系统级性能而言很关键。很多情况下,射频采样ADC可以对几百MHz的信号带宽进行数字量化。前端可以是有源(使用放大器)也可以是无源(使用变压器或巴伦),具体取决于系统要求。无论哪种情况,都必须谨慎选择元器件,以便实现在目标频段的最优ADC性能。
2020-05-20
-
两款新器件重塑信号发生器
过去,任意波形发生器最棘手的部分是输出级的设计。典型信号发生器的输出范围在25 mV 到5 V 之间。为了驱动一个50 Ω 的负载,传统设计采用高性能分立式器件,并联大量集成器件,或者成本昂贵的ASIC,而要构造出稳定且可编程范围较宽的高性能输出级,设计师往往要投入无数小时的时间。现在,技术进步带来的放大器可以驱动这些负载,降低输出级的复杂性,同时还能减少成本、缩短上市时间。
2020-05-19
-
专业音频应用中生成负电源轨的方案
专业音频产品系统产品中会使用到多种多样的运算放大器,ADC和DAC等器件,这些器件有时候不仅需要正电源轨进行供电,还会需要负电源轨进行供电(例如常见的负电压值有-5V,-12V和 -15V 等),且对供电电源轨的噪声也相当有要求。除了噪声要求之外,根据专业音频产品的形态分类,电源轨部分的设计还会考虑效率,PCB面积,成本等等因素。例如,带电池的产品中希望电源轨的高效率以延迟电池的使用时长; 手持式/便携式产品中希望电源轨的外围电路尽可能的简单以减小PCB面积从而满足产品的体积要求。
2020-05-15
-
如何实现高精度、快速建立的大电流源!
电压控制型电流源(VCCs)广泛用于医疗器械、工业自动化等众多领域。VCCs 的直流精度、交流性能和驱动能力在这些应用中至关重要。本文分析了增强型 Howland 电流源(EHCS)电路的局限性,并阐述了如何利用复合放大器拓扑进行改进,以实现高精度、快速建立的±500 mA电流源。
2020-05-15
-
功率放大器在电磁轴承系统中的测试应用
电磁轴承是利用可控的电磁力将转子无接触地悬浮起来的一种支承元件,在高速旋转机械领域有着广泛的应用,在电磁轴承系统中,功率放大器向电磁铁线圈提供相应的控制电流以产生所需要的电磁力,对系统的特性具有重要的作用。
2020-05-15
-
运放噪声------反馈会有什么影响呢?
上个月我们研究了同相放大器的噪声,但是我忽略了反馈网络带来的噪声问题。一位读者向我提出疑问,并希望得到更多详细信息。那么,在图1中R1和R2带来的噪声是多少呢?
2020-05-13
-
霍尔电流传感器在电信整流器和服务器电源中的应用
电信整流器和服务器电源单元(PSU)中的功率因数校正(PFC)电路和逆变电路都需要将高压侧的电流信号检测到位于低压侧的控制器,因此要用到隔离式电流传感器。隔离式电流检测有多种实现方式,例如电流互感器(CT)、隔离放大器和霍尔效应电流传感器。其中,霍尔效应电流传感器因其简便易用、准确、体积小且具有直流检测能力,成为比较理想的选择。
2020-05-12
- 避开繁琐!运放差分电容测量简化指南
- 精准捕捉电流波形:开关电源电感电流测量技术详解
- 恒压变压器选型指南:如何平衡成本与性能?
- 电能控制的中枢神经:控制变压器深度解析
- 物联网互联新选择:1-Wire总线技术详解与实战指南
- 安森美获Vcore技术授权,强化AI数据中心电源解决方案
- 贸泽电子新推EIT专题:洞察3D打印如何重塑设计与制造
- 聚焦能效与性能,Vishay为AI及电动汽车注入“芯”动力
- 2025中国IC独角兽论坛沪上启幕,赋能半导体产业新未来
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall