-
CareFusion与ADI之间的探讨:优化EEG放大器的性能并降低
在过去的20年间,CareFusion Nicolet在EEG诊断系统领域的开发上一直扮演着先驱者的角色。脑电图(EEG)监测可用于神经系统分析,以进行睡眠研究、脑功能区定位(Brain Mapping)和ICU病患大脑活动的监测等。随着脑部研究和EEG诊断的持续突破,人们期望EEG监测装置也能够在传统临床环境以外的新环境中运作,而这些新的环境同时也引发新的设计挑战,本文将探讨其中的一些挑战。
2020-07-22
-
采用交流耦合仪表放大器实现共模抑制比性能的设计电路应用
现代的电池电压为3~3.6V,这就要求电路能在低压下高效工作。本设计提出的一种交流耦合仪表放大器,具有很大的共模抑制比(CMRR)、很宽的直流输入电压容限以及一阶高通特性。这些特性大多是由高增益 级设计提供的。电路采用普通参数值和普通容限的元件。图1a示出简化的放大器电路。该电路的一般原理是电容器C和电阻器R3对输入信号进行缓冲和交流耦合。
2020-07-22
-
提高差分放大器的共模抑制比,电阻的选择很关键
在各种应用领域,采用模拟技术时都需要使用差分放大器电路,如图 1 所示。例如测量技术,根据其应用的不同,可能需要极高的测量精度。为了达到这一精度,尽可能减少典型误差源(例如失调和增益误差,以及噪声、容差和漂移)至关重要。为此,需要使用高精度运算放大器。放大器电路的外部元件选择也同等重要,尤其是电阻,它们应该具有匹配的比值,而不能任意选择。
2020-07-16
-
用低噪声仪表放大器设计高性能系统
低噪声仪表放大器是一种非常灵敏的器件,它能够在嘈杂的环境中或出现较高不感兴趣电压的条件下对非常微弱的信号进行测量。放大器通过抑制两个输入端的共模电压和放大输入信号的差值来测量信号。低噪声仪表放大器宽带噪声极低且1/f噪声转折频率低,因此,能满足大多数精确应用的需要。
2020-07-16
-
详解一款无需放大器也能实现更高调谐电压的频率合成器
锁相环(PLL)电路是由压控振荡器(VCO)和鉴相器组成的反馈系统,振荡器信号跟踪施加的频率或相位调制信号是否具有正确的频率和相位。需要从固定低频率信号生成稳定的高输出频率时,或者需要频率快速变化时,都可以使用PLL。
2020-07-13
-
ADALM2000实验:共发射极放大器
共发射极放大器是三种基本单级放大器拓扑之一。BJT共发射极放大器一般用作反相电压放大器。晶体管的基极端为输入,集电极端为输出,而发射极为输入和输出共用(可连接至参考地端或电源轨),所谓“共射”即由此而来。
2020-07-08
-
运算放大器中“轨到轨”的意义
在一些特殊的场合,如穿戴设备,由于采用锂电池供电,并且需要考虑到尺寸等问题,因此通常其供电电压并不高。如采用锂电池3.7V供电,在这种情况下,为了尽可能的使信号的幅度大就需要充分利用系统所提供的电源轨。
2020-07-07
-
禁用引脚还能节省这么多的功耗?我不信
在物联网时代,电池供电应用日益兴盛。本文将说明我们并非一定要在节省功耗和精度之间进行取舍。有些运算放大器有禁用引脚,如果使用得当,可以节省高达 99%的功耗,同时不影响精度。禁用引脚主要用于静态工作(待机模式)。在这种模式下,所有IC都切换到低功耗状态,不需要使用器件来处理信号。这使功耗降低了若干个数量级。
2020-07-07
-
如何搭建小型又经济的输出级?
信号发生器产生定义的电信号,其特性随时间推移而变化。如果这些信号表现为简单的周期波形,如正弦波、方波或三角波,那么这些信号发生器称为函数发生器。它们通常用于检查电路或组件的功能。将信号发生器定义的信号施加于被测电路的输入端,并在输出端连接至相应的测量设备(例如,示波器)。这样用户就可以对电路进行评估。过去,挑战通常包括如何设计信号发生器的输出级。本文介绍如何设计通过电压增益放大器(VGA)和电流反馈放大器(CFA)搭建的小型经济的输出级。
2020-07-06
-
5个运算放大器的使用小技巧,学到就是赚到
运算放大器是具有很高放大倍数的电路单元。在实际电路中,通常结合反馈网络共同组成某种功能模块。它是一种带有特殊耦合电路及反馈的放大器。目前,运算放大器被广泛应用于电子行业中,但是如果在使用运算放大器的过程中不“遵守”一些规则,可能会造成严重后果。下面谈谈我用运算放大器的一点体验和经验。
2020-07-06
-
MOS晶体管共源极放大器
共源极放大器是三种基本单级放大器拓扑之一。MOS共源极放大器一般用作反相电压放大器。晶体管的栅极端为输入,漏极端为输出,而源极为输入和输出共用(可连接至参考地端或电源轨),所谓共用即由此而来。
2020-06-30
-
推挽放大器交越失真的成因及消除方法
本文的测量与分析,以输入及输出均为变压器耦合的经典电路为原型。至于另一种也被广泛使用的单端推挽电路,仅仅是输入信号的激励方式,以及输出信号的整合方式不同,下述的基本原理依然适用。
2020-06-29
- 避开繁琐!运放差分电容测量简化指南
- 精准捕捉电流波形:开关电源电感电流测量技术详解
- 恒压变压器选型指南:如何平衡成本与性能?
- 电能控制的中枢神经:控制变压器深度解析
- 物联网互联新选择:1-Wire总线技术详解与实战指南
- 安森美获Vcore技术授权,强化AI数据中心电源解决方案
- 如何利用OTT技术实现模拟前端的80V过压?;?/a>
- 贸泽电子新推EIT专题:洞察3D打印如何重塑设计与制造
- 聚焦能效与性能,Vishay为AI及电动汽车注入“芯”动力
- 2025中国IC独角兽论坛沪上启幕,赋能半导体产业新未来
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall