【导读】超级电容由于其充电次数,更好的瞬态性能,更简单的充电管理以及更少的环境污染,在很多应用中越来越受欢迎。多个电容单体(2.7V)串联往往需要buck-boost充电拓扑来实现电源的充电管理。BQ25703A是一种集快速充电、电源路径管理、?;すδ苡谝惶宓牡バ酒桨?。本文讨论了在实际应用中的一些注意事项。
1. 典型充电电路和充电曲线:

图1 典型应用电路

图2 典型的充电曲线

图3 配置和软件设置
2. 加速充电过程
与锂电池的预充电过程不同,超级电容可以直接快速充电,从而减少充电时间,可以采取如下两种方式来减小芯片自带的预充过程,
使用更低的检流电阻Rsr=2mOhm.
默认是10 mOhm,相当于提升5倍的预充电流。

图 4 20s 快速充电充满
2去使能LDO 模式
为了保证芯片的最小工作电压,在预充过程充,BATFET处于LDO模式下,采用旁路模式也能加快充电速度,但会牺牲一部分系统电压范围。

图 5 LDO 使能模式

图6 LDO旁路模式
3. 兼容0.5A小电流USB输入
当输入电源的电流能力有限,而充电电流很高时会有拉低输入电压的风险,需要动态的配置充电电流,防止系统电压过低导致的系统崩溃。BQ25703A的DPM模式能灵活地设置输入功率限制,动态地的分配实时的充电电流,保证输入电压恒定。

图 7 无DPM模式

图8 DPM模式
4. 被动均衡功能
为了防止单体过充或者欠充,需要加入主动或者被动均衡,在保证功耗的基础上,被动均衡的电路简单,成本更低。


图9 电阻被动均衡
5. 硬件过充?;?/div>
当软件崩?;蛘叱绦虼砦笊柚檬?,需要硬件的保护来防止电压过冲而引起的危险。使用内部比较器并结合芯片本身的HIZ模式可以强制?;こ涞绲缪沟陀谏柚玫陌踩畔拗?。


图10 HIZ 硬件过压?;?/div>
6. 综述
综上,BQ25703A可以作为多节的超级电容的升降压充电方案,自带power path 功能和DPM功能,软件配置灵活,硬件?;すδ芷肴?。
推荐阅读:
特别推荐
- ROHM新型接近传感器面世:VCSEL技术赋能工业自动化精准感知
- 为智能电动汽车赋能!纳芯微NSR2260x-Q1系列攻克复杂电源挑战
- 射频性能再升级,大联大品佳推出基于达发AB1585AM的头戴式蓝牙耳机方案
- 从零售到医疗:安勤四尺寸触控电脑满足多元自助服务场景
- 覆盖全球导航系统:Abracon新品天线兼容GPS/北斗/Galileo/GLONASS四大星座
技术文章更多>>
- 意法半导体CEO将重磅亮相摩根士丹利TMT大会,释放战略信号
- 采购无忧:贸泽电子备货瑞萨新品,覆盖全系列嵌入式应用
- 创新强基,智造赋能:超600家企业齐聚!第106届中国电子展打造行业盛宴
- 安森美获Aura半导体授权,强化AI数据中心电源生态
- 东芝携150年创新积淀八赴进博,以科技赋能可持续未来
技术白皮书下载更多>>
- 车规与基于V2X的车辆协同主动避撞技术展望
- 数字隔离助力新能源汽车安全隔离的新挑战
- 车用连接器的安全创新应用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
热门搜索





