桃花源qm花论坛(品茶),凤楼阁论坛官网入口网址,一品楼品凤楼论坛最新动态,风楼阁全国信息2024登录入口

为何混合型交流浪涌?;て魇抢擞勘;な籽。?/h2>

发布时间:2024-12-16 来源:DigiKey得捷 责任编辑:lina

【导读】现在的电子设备无处不在且发展迅速,其越来越敏感的电路在很大程度上依赖前端?;ぃ蛭且尤氲缌∩枋?,而这些基础设施可能有或者没有最新的电压浪涌和瞬态保护功能。这些瞬态事件可能是由雷击、开关动作或类似的电压浪涌事件造成的结果,会导致过电压和过电流事件,进而损坏敏感电子设备或者降低其性能。


本文简要讨论 GDT 和 MOV 浪涌保护器的工作原理,然后以 Bourns 的实际 IsoMOV 混合保护器为例考察其特点。文章最后说明如何通过实施 IsoMOV 技术来满足 IEC/UL62368-1 标准。


现在的电子设备无处不在且发展迅速,其越来越敏感的电路在很大程度上依赖前端?;?,因为它们要接入电力基础设施,而这些基础设施可能有或者没有最新的电压浪涌和瞬态保护功能。这些瞬态事件可能是由雷击、开关动作或类似的电压浪涌事件造成的结果,会导致过电压和过电流事件,进而损坏敏感电子设备或者降低其性能。


诸如气体放电管 (GDT) 和金属氧化物压敏电阻 (MOV) 等现有的低成本浪涌?;ぜ际跄芄蛔苹蛞种评擞磕芰浚宰柚估擞磕芰康酱锉槐;ど璞?。这两种技术各有优势,但它们在失效前能处理的瞬态数量都是有限制的。另外,GDT 可能不会完全切断电流,而 MOV 在经过若干次瞬态事件激活后,可能会因热击穿而失效。


为了保持 GDT 和 MOV 的优点并减少其性能上的不足,已经出现了集成混合技术组件的单器件,且在给定的浪涌保护水平下,器件的物理尺寸相对较小。虽然集成组件的互补性提高了两者的性能,延长了运行寿命,但要做到高效率,还需要认真匹配 GDT 和 MOV 元件。经过正确实施,这些 IsoMOV? 混合浪涌保护器特别有助于确保符合 IEC/UL62368-1 标准,该标准是关于信息技术和音频/视频设备危险方面的标准。


SPD的工作原理


浪涌?;ぷ榧辛街止ぷ鞣绞?,一种是用作开关,将浪涌转移到地面(有时称为“撬棍”),另一种是通过吸收和耗散瞬时能量,将最大电压箝制在较低的水平,从而限制浪涌电压。


例如,GDT 就是一种撬棍式抑制器。这种抑制器由位于氩气等非反应性气体中的火花间隙组成,并横跨电源线接线。如果电压水平低于GDT 的击穿电压,该抑制器基本上处于高阻抗“关断”状态。如果一个瞬态使电压水平升高并超过 GDT 的击穿电压,GDT 就会进入导通或“接通”状态(图 1)。


为何混合型交流浪涌?;て魇抢擞勘;な籽。? width=


由于 GDT 横跨电源输入,所以基本上使电源形成了短路。这将触发熔断器、断路器或其他串行?;ぷ爸?,从而保护 GDT 下游的电路。请注意,在关断状态下电压高,电流小。在导通状态下则正好相反,且除了状态转换期间外功率耗散极小。重置 GDT 状态需要将输入电压降低到击穿电压以下。在电源线输入电压没有下降到足够低的情况下,GDT 可能不会复位,并继续传导“跟随”电流,使其保持导通状态。GDT 保持导通的可能性是这种浪涌保护技术的一个重大限制。

MOV 是一种钳位装置。与 GDT 一样,该器件横跨电源线布置。正常情况下,MOV 处于高阻抗状态,只吸收很小的泄漏电流(图 2)。


为何混合型交流浪涌?;て魇抢擞勘;な籽。? style=


发生电压浪涌时,MOV 的阻抗下降,吸收更多的电流,从而耗散功率;这会降低并限制瞬态电压。瞬态结束时,MOV的阻抗增加并恢复到正常状态。MOV 的额定值是基于其能够耐受此类瞬态事件的数量。经过一些瞬态事件后,MOV 的漏电流可能会增加。这将增加器件的耗散功率,导致发热。发热会增大漏电流,并可能使 MOV 进入热击穿状态,从而造成灾难性器件故障。


这两种浪涌保护技术本身都不是很理想。然而,如果将 GDT 和 MOV 与电源线串联,它们之间的特性互补就会变得很明显。在正常工作状态下,GDT 断开,MOV 中无漏电流。在电压瞬态期间,GDT 触发,从而将 MOV 接入电路。然后 MOV 钳制瞬态浪涌电压。瞬态结束后,MOV 断开,减少流经 GDT 的电流,也使得 GDT 关断。


对于 GDT 和 MOV 的串联,需要仔细匹配其特性,以便能够精确地相互补充。分立实施方式从设计到制造、测试和包装都会受到各种因素的影响,使得设计者很难找到良好的匹配方案。为了应对这些挑战,Bourns 的 IsoMOV 混合?;て鹘蛔榫钠ヅ涞?MOV 和一个 GDT 元件整合到单一封装中,该封装比单组件体积要小得多(图 3)。



为何混合型交流浪涌?;て魇抢擞勘;な籽??




图 4 中的 IsoMOV 混合保护器的合成瞬态电压响应显示 了这两个元件是如何共同发挥作用的。




为何混合型交流浪涌保护器是浪涌?;な籽??




IsoMOV 混合?;て鞯牧礁鲈疾捎昧四芄欢懒⒊惺茏畲罅ぷ鞯缪?(MCOV) 的设计。如前所述,当没有瞬态发生时,GDT 会阻断 MOV 的漏电流。即使经过多次瞬态事件,GDT 也能切断正在上升的 MOV 漏电流。MOV 可以防止瞬态浪涌的后续电流,从而保护 GDT。与单个 MOV 相比,IsoMOV器件的几何形状可增加单位面积的浪涌容量。
在设计工程师看来,IsoMOV 器件以小型集成封装提供了更强的?;?,这种封装将元器件数量和电路板空间都降到最小。例如,ISOM3-175-B-L2 是一款 IsoMOV 混合?;て鳎?MCOV 为 175 VRMS,能够处理至少 15 个 3 kA 额定浪涌,且最大钳位电压为 470 V(图 5)。该器件直径为 13.2 mm,厚6.1 mm。直径随最大电流能力而变化,厚度随 MCOV 的增大而增大。







Bourns IsoMOV 系列具有 3 kA、5 kA 和 8 kA 三种不同的额定电流,额定 MCOV 的范围为 175 - 555 VRMS。中等器件包括 ISOM5-300-B-L2,这是一款 300 VRMS、5 kA 器件,其直径 17 mm,厚 7.1 mm。在大电流端是 ISOM8-555-B-L2,这是一款 8 kA 器件,具有 555 VRMS MCOV。该器件的直径 23 mm,厚 9.4 mm。所有这些器件的工作温度为 -40℃ 至 +125℃。

与单独使用 MOV 和 GDT 相比,Bourns的 IsoMOV 混合?;て饕愿〉目占浯锏搅苏庑┳钕冉睦擞康燃?。该保护器具有超低漏电流,而且串联 GDT 延长了 MOV 的使用寿命。此外,所有 IsoMOV SPD 都被列为 UL1449 第 4 类部件,使其更容易被设计为浪涌保护器。

实施符合 IEC/UL62368-1 标准的?;?/section>

IsoMOV 组件非常有助于实施符合 IEC/UL62368-1 标准的解决方案。新型 IEC/UL 62368-1 音频/视频和信息通信技术设备的安全标准基于危险安全工程 (HBSE) 原则,用于设备用户的人身安全和实施安全措施。该标准确定了潜在的危险能量源以及在正常运行和故障条件下,能量可以传递给用户的过程。

图 6 中推荐的电源输入保护设计包括从线路到中性点、线路到?;さ匾约爸行缘愕奖;さ氐谋;て骷?。







使与 MOV 串联的 GDT 或者IsoMOV 位于线路与地之间或中性点与地之间,是为了防止单独使用 MOV 时可能发生的触电。如果没有连接?;さ?,仅 MOV 的漏电流就可能高到足以在用户触碰到隔离接地路径时造成伤害。将 GDT 串联可以消除这种漏电流。

与 MOV 和含有 MOV 的器件有关的危险包括由于漏电流过大造成的电击以及火灾风险。由于其故障模式,MOV 被视为潜在起火源 (PIS),要求设计包括减少起火可能性并阻止任何火灾蔓延的步骤。

浪涌?;て饔兄谔岣卟房煽啃裕冶匦敕媳曜家蟮木咛宀馐?。例如,MOV 的 MCOV 必须至少是设备电压范围上限的 1.25 倍。对于电源输入范围为交流 85 V 至 250 V 的设备,该设备的线路?;?MOV 的最小 MCOV 应为 313 V。对于含有横跨线路的 MOV 的线路?;さ缏?,应能承受基于两倍标称额定值的线路电压的测试。输入电流通过电阻器依次限制为 0.125 A、0.25 A、0.5 A、1 A 和 2 A。鉴于 MOV 是潜在火源,测试一直持续到 MOV 失效为止。对于 MCOV 大于 2 倍最大额定线路电压的 MOV,不需要进行这种测试,因为在这些条件下 MOV 发生故障的可能性非常小。

结语

IsoMOV 混合?;て魑缱酉低程峁┝烁判恪⒏舸盏谋;て骷?,因为在基础设施老化或?;げ涣σ约坝没П;け曜疾欢媳浠那榭鱿?,电子系统正在加速进步、缩小和激增。除了卓越的性能和节省空间外,这些?;て骰咕哂欣┱刮露确段?、低泄漏和高能量处理能力。虽然这类器件对暴露于高浪涌的工业应用特别有用,但它们也能很容易地在音频/视频、信息通信技术设备中实施,以满足基于危险安全工程 (HBSE) 的 IEC/UL62368-1 标准。


作者:Art Pini,来源:DigiKey得捷

 

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。


我爱方案网


推荐阅读:

全局快门图像传感器选型指南:关键要点解析

协同创新,助汽车行业迈向电气化、自动化和互联化的未来

对比双电源分立式和集成式仪表放大器

芝识课堂【CMOS逻辑IC的使用注意事项】—深入电子设计,需要这份指南(一)

无辅助绕组 GaN 反激式转换器如何解决交流/直流适配器设计难题


特别推荐
技术文章更多>>
技术白皮书下载更多>>
热门搜索
?

关闭

?

关闭